2nd U.S. – China CO₂ Emissions Control Science & Technology Symposium

Schlumberger

Overview

- Introduction
- Monitoring goals
- MMV technology options
- Early case studies
- Summary

CO₂ Storage Project

Activities

Schlumberger Carbon Services Middle East and Asia

Schlumberger

Why Monitoring?

- Health and safety reasons
- Mass balance verification
- To improve reservoir understanding
- CO₂ sequestration technology development

Cameroon Lake Nyos – August 21st 1986

Photo by Jack Lockwood, U.S. Geological Survey.

Monitoring Framework

Large Scale CO₂ Injection

Basic Fluid Effects
Fluid movement
Pore pressure

Geochemical Processes
Reactive Fluid Transport
Frame dissolution
Precipitation
Surface alteration

Geobiological Activity
Unusual populations
Couples to chemistry

Macroscopic Observations

Schlumberger

4D Seismic Method

Observation

Relative change in seismic response

Goal

Map relative change in reservoir reflectivity to changes in S_g, P, T,GWR

Repeatable acquisition & processing

Relative change in seismic survey parameters

Environment

Non-Repeatable Noise

Rock properties

"4D Ready"
Survey Design

Equipment

Schlumberger

Schlumberger Carbon Services Middle East and Asia

Three Scales for Time Lapsed Seismic Imaging

Well Oriented CO₂ Monitoring Techniques

	Measurement Type	CO ₂ Injection Well	Monitoring Well
Permanent	Temperature	✓	✓
	Pressure	✓	✓
	Geophone – Passive Seismic	✓	✓
	DTS	✓	✓
Time Lapsed	3D VSP	✓	✓
	Borehole Seismic - Borehole Gravity	✓	✓
	Injection Flow Profile – DHFM, PLT	✓	✓
	X-Well Tomography (Seismic / EM / ER)	✓	✓
	MDT - CHDT - CHFR - AIT - RST - IBC - Sonic Scanner	✓	✓

Atmospheric Monitoring

Monitor CO₂ in the atmosphere and define the sources

Casing Corrosion

- Image of inside or outside casing radius
- 3D Viewer

Channeled section in LiteCRETE cement

CO₂ Monitoring Using RST – Frio Experiment

- CO₂ Injection
 - started on Oct 4th 2004, stopped on Oct 14th
- 1,600 t/CO₂ injected
- Target: Frio formation (~5000 ft deep)
- Sandstone
- High Salinity: 93,000 ppm
- High Porosity: 32-35 p.u.
- High Permeability: 2.5 Darcy (air)
- Injector-Monitoring well spacing: 100ft

Monitoring Using RST – Σ Measurement

RST logging in FRIO CO₂ injection well

Sakurai et al. , SPWLA 46th - June 26-29th - 2005

Microseismics

Main applications:

- Injection control
- Avoid fracturing cap rock
- Control CO₂ displacement
- Fault Re-activation

Case Study: Sleipner Project

- Sleipner natural gas contains ~9% CO₂
 - Contract: 2.5% CO₂
 - CO₂ stored; about 1MT annually
- CO₂ injected into the thick Utsira sandstone layer
 - 800-1100 m depth below sea level
 - Porosity 35-40 %
 - Permeability 2-5 Darcy
 - Homogeneous sand + shale stringers
- CO₂ injection 1996-2020
- Time-lapse seismic: 1994, 1999, 2001, 2002 (and 2005)
- Time-lapse gravimetry: 2002 (and 2005)

CO₂ storage

CO₂ injection well

Illustrations courtesy of Statoil

Sleipner Seismic Reservoir Imaging

Sleipner Time Lapsed Seismic Monitoring Results

SOURCE: BGS- STATOIL

Sleipner Seismic Monitoring Quantitative Results

Monitoring Technology Options

Objective	Criticality	Surf/ VSP Seismic	Passive Seismic	Water Wells	Atmos	Soil Gas	U tube	RST	SFRT	Integrity Logs
Breakthrough detection										
Plume shape										
Plume travel path										
Plume travel speed										
Containment										
CO ₂ area of accumulation										
Public Acceptance										

Schlumberger Activities in CO₂ Storage

USA and Canada

Weyburn EOR Canada
DOE Regional Partnerships
Frio Texas
Battelle Ohio-W. Virginia
Sheep Mountain Colorado
Multiple CO₂ EOR studies, Permian
Approx 70 CO₂ EOR Installations

Europe, North

Africa & Russia

All France

Sleipner Norway

Snohvit Norway

In-Salah Algeria

Ketzin Germany

Karniow Poland

Various CO2 EOR studies

CO2ReMoVe

Cosmos 1+2

MoveCBM

COACH

NZEC

ANR monitoring project

Middle East & Asia

Multiple CO₂ EOR feasibility studies Associated CO₂ prod re-injection studies MoveCBM China

Australia

Gorgon Barrow Island Otway Basin CO2CRC Callide Queensland

Conclusions

- Reservoir integrity issues:
 - Fault activation, cap rock integrity, dissolution, precipitation
- Technologies exist to address;
 - Integrity assessment and continuous monitoring
- More high volume demonstration projects needed
 - Spatial coverage and frequency of the measurement
 - Policy for liability
 - Fit for purpose monitoring scheme
- Collaboration with all players is a must for success

2nd U.S. – China CO₂ Emissions Control Science & Technology Symposium

Schlumberger

Monitoring and Verification Goals

Assurance Monitoring (no leakage)

- Soil and atmospheric measurements to confirm non leakage/seepage of injected CO₂.
- Hydrogeological monitoring to ensure no leakage of CO₂ into the overlying aquifers

Storage Integrity Monitoring (predicted behavior)

Validate migration paths - geophysics

Validate migration times - geochemistry

Validate likely shape - reservoir properties

Validate geomechanical integrity - coupled models

Monitoring and Verification Considerations

Reservoir

- Seal robust and sand contiguous
- Reservoir bounded by sealing faults
- Residual gas and water
- Simulation models available to predict plume movement

ORA

- Risk quotient consistent with being able to retain 99% of injected CO₂ for 1000 years in primary reservoir
- Key risk elements: Leakage through faults, Regional over pressurisation and earthquake induced fractures

M&V and Baseline Considerations

- Image on both sides of the bounding fault
- Image regionally and locally (well based) overlying reservoirs
- Consideration for regional faults in defining soil gas and water sampling grid
- Downhole pressure monitoring to control injection pressures

